A Machine Learning Approach for Automated Filling of Categorical Fields in Data Entry Forms

نویسندگان

چکیده

Users frequently interact with software systems through data entry forms. However, form filling is time-consuming and error-prone. Although several techniques have been proposed to auto-complete or pre-fill fields in the forms, they provide limited support help users fill categorical fields, i.e., that require choose right value among a large set of options. In this paper, we propose LAFF, learning-based automated approach for LAFF first builds Bayesian Network models by learning field dependencies from historical input instances, representing values filled past. To improve its ability, uses local modeling effectively mine cluster instances. During phase, such predict possible target field, based on already-filled their dependencies; predicted (endorsed prediction confidence) are then provided end-user as list suggestions. We evaluated assessing effectiveness efficiency two datasets, one them proprietary banking domain. Experimental results show able accurate suggestions Mean Reciprocal Rank above 0.73. Furthermore, efficient, requiring at most 317 ms per suggestion.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Data Mining approach for forecasting failure root causes: A case study in an Automated Teller Machine (ATM) manufacturing company

Based on the findings of Massachusetts Institute of Technology, organizations’ data double every five years. However, the rate of using data is 0.3. Nowadays, data mining tools have greatly facilitated the process of knowledge extraction from a welter of data. This paper presents a hybrid model using data gathered from an ATM manufacturing company. The steps of the research are based on CRISP-D...

متن کامل

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

Design of an Automated Data Entry System for Handwritten Forms

In this new informative era, data and information is the most important asset to the organizations. A large amount of money and manpower have been spent in data gathering, data entry, and storage every year. In Malaysia, data gathering is still largely done through manually-filled forms. This data is then entered and stored into databases in government and private organisations manually. Such m...

متن کامل

Systematic Search for Categorical Attribute-value Data-driven Machine Learning

Optimal Pruning for Unordered Search is a search algorithm that enables complete search through the space of possible disjuncts at the inner level of a covering algorithm. This algorithm takes as inputs an evaluation function, e, a training set, t, and a set of specialisation operators, o. It outputs a set of operators from o that creates a classifier that maximises e with respect to t. While O...

متن کامل

A Machine Learning Approach for Automated Geomorphic Map Generation

Intelligent, automated analysis of data is a critical task in modern data-intensive sciences. The work presented in this thesis is a contribution to this body of research, focusing on automatic geomorphic characterization of planetary surfaces (particularly Mars). We present a framework for automated generation of geomorphic maps from topographic data. Our approach first segments the topographi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACM Transactions on Software Engineering and Methodology

سال: 2023

ISSN: ['1049-331X', '1557-7392']

DOI: https://doi.org/10.1145/3533021